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Abstract

This paper outlines a direct route to the construction of effective tree-shaped flow structures. Dendritic flow

structures dominate the design of natural and engineered flow systems, especially in thermal and fluid systems. The

starting point is the optimization of the shape of each elemental area or volume, such that the length of the flow path

housed by the element is minimized. Proceeding toward larger and more complex structures – from elements, to first

constructs, second constructs, etc. – the paper develops tree-shaped flow structures between one point and a straight

line, one point and a plane, a circle and its center, and a point and many points distributed uniformly over an area. In

the latter, the construction method is applied to a fluid flow configuration with laminar fully developed flow. The

constructions reveal several features that are supported by empirical observations of natural tree-shaped flows:

asymmetry, flow rate imbalance, pairing or bifurcation, angles between branches, and Y-shaped constructs that lie in a

plane. It is shown that these basic features are necessary because of ‘‘packing’’, i.e., assembling optimized elements into

a fixed space, and filling the space completely. For the flow between an area and one point, the best elemental shape is

the regular hexagon. It is shown that the emergence of string-shaped links that connect two or more elements are

necessary features, which are also required by packing. Strings cover some of the inner zones of the tree network,

particularly the inner zones of large and complex trees. Dichotomous Y-shaped constructs dominate the tree structure,

especially the peripheral zones of the tree canopy. The practical importance of the simplified design method is dis-

cussed. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this paper we propose a simpler and more direct

route to the construction of optimized tree-shaped paths

for flows between discrete points (sources, sinks) and

infinite numbers of points (lines, areas, volumes). Tree-

shaped flow architectures are everywhere in nature

and engineering. They are so prevalent and important

that their design – the generation of optimal geometric

form – recommends itself as a principle that unifies the

natural flows with the engineered [1]. Many things flow

along tree-shaped paths: fluids, electricity, heat, goods,

people, information, etc. Reviews of the morphology of

tree flows in heat transfer, microchannel networks, elec-

tronics cooling, fluids engineering, geophysics, phys-

iology, urban design, transportation and many other

sectors of engineering are provided in [1–8].

To see the simplicity of the proposed method, it is

useful to review the theoretical (predictive) methods that

have been used until now. The regular architectures of

bronchial trees and vascularized tissues, coupled with

the belief that the urge to ‘‘survive’’ pushes the most

complex flow systems (e.g., animals) toward greater

global performance (‘‘the fittest’’), have fueled the

speculation that tree flows too are results of optimiza-

tion. They are flow systems with objective (or purpose)

and constraints (e.g., volume). Without purpose and
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constraints, optimization makes no sense. All the words

that are used to describe the geometric patterns that we

see in nature – basic words such as survival, fittest, op-

timized, and best – speak of purpose and constraints, the

result of which is design.

Murray [9] and several other authors [2,10] tried

to predict geometrical features of tree flows from the

principle of the minimization of resistance to fluid flow

subject to fixed total flow volume. This principle is

equivalent to the minimization of pumping power (or

entropy generation, or exergy destruction) when the flow

rate is specified. It is the same principle that governs the

thermodynamic optimization work that goes on in many

sectors of engineering. He showed that if the flow regime

is laminar and fully developed in every tube of the fluid

tree, and if two tubes come together into a single one

(pairing, or bifurcation), then the optimized structure

must have a special ratio of tube diameters

Diþ1=Di ¼ 21=3; ð1Þ

where Di is the diameter of each of the two streams that

flow together into or out of the tube of diameter Diþ1. If

the flow regime is fully developed and turbulent, the

optimal tube diameter ratio is Diþ1=Di ¼ 23=7 [1,11].
The optimal ratio of tube diameters enjoys great

generality. It is independent of the lengths of the tubes.

It is also independent of angles and relative orientation

(layout) of the tubes. Any assumed arrangement of tubes

would have to exhibit Murray’s diameter ratio in order

to perform best. This is why in all the subsequent the-

oretical work the authors focused on tube diameters, the

minimization of flow resistance, and ‘what else’ could be

optimized so that additional geometrical features of

the tree could be deduced from the same resistance

minimization principle. Along this route, Murray [12]

showed that there exists also an optimal angle of con-

fluence between two tubes with different diameters (i.e.,

with different flow resistances). The same feature was

discovered in geographical economics by L€oosch [13],

who minimized the cost of transporting goods between

two points when two modes of transportation are avail-

able (e.g., land and sea).

More recently it was shown that the ratio of tube

lengths can also be optimized if the additional constraint

is the total volume occupied by the tube construct [11].

A large volume can be filled with a tree-shaped flow

network by assembling optimized tube constructs into

progressively larger constructs. This sequence of con-

struction (from small to large) starts from an elemental

volume that has a finite size and a single tube. The shape

of the elemental volume is also optimized based on flow

resistance minimization [1].

The construction method proposed in the present

paper differs from the post-Murray methodology in two

Nomenclature

a length (m)

Ai area ðm2Þ
b distance (m), Eq. (15)

b0 distance (m), Eq. (18)

c length (m)

c0, ca dimensionless ratios, Eq. (22)

C, C0 factors, Eqs. (12) and (19)

d elemental length (m)

D, Di tube diameters (m)

e, f , g, l lengths (m)

f global flow resistance, dimensionless, Eq.

(23)

L, Li lengths (m)

_mmi mass flow rate (kg/s)

n0 number of tubes that reach the center

N number of points on the circular perimeter

p number of pairing levels

P point on the tree periphery, Fig. 1
~PP dimensionless overall flow resistances, Eqs.

(14) and (20)

Q first junction, Fig. 1

ri radial distance (m)

R second junction, Fig. 1

S third junction, Fig. 1

Vi volume ðm3Þ
Vt tube volume ðm3Þ
x ratio, d=r
x1;2;3 relative lengths, Fig. 9(a)

Greek symbols

b angle (rad)

c angle (rad)

di radial thickness (m)

DP pressure drop (Pa)

hi angles (rad)

k Lagrange multiplier

m kinematic viscosity ðm=s
2Þ

/ angle (rad)

U function, Eq. (7)

Subscripts

bent Y bent Y-shaped construct, Fig. 2

flat Y plane Y-shaped construct, Fig. 8

i order of construct, assembly, complexity

k order of link

0 elemental

1; 2; . . . first construct, second construct; . . .
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very basic ways. First, the optimization of tube dia-

meters is not an issue. Instead, we focus entirely on the

geometric layout of the flow path, inside the space that

houses it. In this new approach the flow ‘tube’ is a line

segment. Chief unknowns are the length and position of

each segment, i.e., the unknowns that persisted long

after Murray. Optimized ratios of tube diameters can be

added to the tree-shaped pattern later, that is, if the

purpose of the tree is to guide a fluid (e.g., Sections 5

and 6).

Second, instead of minimizing resistance to flow, we

minimize only lengths – the length of each segment. We

show that from this single objective results the entire

tree (lengths, angles, assembly, fitting, space filling). By

contrast, to use the flow resistance is to pursue a con-

siderably more complex objective. The flow resistance

depends not only on path length but also on what flows

(e.g., fluid, heat, electricity), flow regime, tube diameter,

cross-sectional shape, wall surface condition, and on

whether the stream has a free surface as in open channel

flow (e.g., Sections 5 and 6). These complications have

blurred the tree design theory from the beginning.

Complications require ad-hoc assumptions, which re-

strict the validity of the theory to a particular class of

flows.

2. Tree between one point and a straight line

Consider the problem of connecting all the points of

a straight line (e.g., line P) with a single point (S) situ-

ated off the line, Fig. 1. The single point may be the

source of a stream (e.g., water) and the line may repre-

sent a large number of users of the water stream. We

approximate the line with a sequence of equidistant

points: the distance between two consecutive points is d.

The space (rectangular area) around each point is finite

and fixed, A0 ¼ cd, constant. This area represents the

smallest element of the flow structure that will be de-

signed. Its purpose is to allow the point (P) to commu-

nicate with the rest of the flow structure. The link is the

segment PQ, where Q is a corner on the side opposite the

side for which P is the midpoint (Fig. 1). An interesting

feature of the elemental system is that the length of the

segment PQ,

LPQ ¼ ½ðd=2Þ2 þ c2�1=2 ð2Þ

can be minimized by varying the element aspect ratio

c=d subject to the A0 constraint. The PQ segment is the

shortest when the aspect ratio is c=d ¼ 1=2. This special
shape was drawn in the upper part of Fig. 1. The link PQ

makes a 45-degree angle with the line of points of type P.

Following this first optimization step, the links of

type PQ occupy a strip of thickness c ¼ d=2. Points of

type Q occupy the lower boundary of this strip (the Q

line), and the distance between them is 2d. Each point Q

is the junction of two PQ segments. Access from Q to

other parts of the flow structure is effected along seg-

ments of type QR. The rectangle that houses the QR

segment is completely analogous to the elemental rect-

angle that houses the PQ segment. These rectangles are

stacked and shaded in the lower part of Fig. 1. The

length of the QR segment can be minimized by selecting

the aspect ratio of the rectangle that houses it. The op-

timal aspect ratio is the same as at the elemental level,

and the minimized QR segment makes a 45-degree angle

with the Q line. Eye pleasing is the coincidence that the

QR segment is colinear with one of the PQ segments.

The rest of Fig. 1 outlines the subsequent steps of the

construction. Each step is analogous to the preceding

one, while the length scale of each optimized rectangle is

the double of the preceding length scale. Two tubes are

joined together at a 90-degree angle at each level of

assembly. The total length from the source (point S)

to each point P is the same. In other words, the tree

structure generated by minimizing each segment is also

the structure that maintains constant the distance be-

tween the point (S) and each of the points of line P. If we

use the words ‘flow resistance’ instead of ‘length’, then

the structure designed in Fig. 1 distributes uniformly the

flow resistance between one point and one line. Because

the resistance to flow represents the thermodynamic

imperfection of the flow system, the structure derived in

Fig. 1 has the merit of distributing the imperfection

uniformly throughout the flow system. The optimal

distribution of imperfection is a recurring feature in

constructal design [1].

The tree structure may be viewed as the result of

fitting together rectangular flow elements the shapes of

which have been optimized. Although this ‘constructal’

sequence has been used before, the present construction

Fig. 1. Elemental system with one flow segment (top), and the

construction of the minimal-length tree between a line and a

point (bottom).
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is new. First, contrary to the examples reviewed in [1], all

the rectangular building blocks shown in Fig. 1 are

geometrically similar. Second, at the elemental level the

flow path PQ is not aligned with one of the sides of the

elemental rectangle. Third, the present construction is

not concerned with the ’diffusion’ flow that would oc-

cupy the white regions of the A0 area in order to connect

Q with the infinity of points of the side on which P is

situated. The entire tree architecture of Fig. 1 is a con-

sequence of the geometric property documented by

minimizing LPQ.

3. Tree between one point and a plane

Consider next the three-dimensional counterpart of

the construction that we just made. The problem is to

connect with paths of minimum length one point to the

infinity of points of a plane. We approximate the latter

with a patchwork of square area elements of side d,

centered at one discrete point (P). In other words, the

area d � d is represented by one point in the plane. The

elemental volume is fixed, V0 ¼ cd2, constant. The con-

nection between P and the rest of the flow structure is

made along the segment PQ, where Q is the middle of

one of the sides of the square situated at the distance c

relative to the plane of P. The length of the PQ segment

is the same as in Eq. (2), for which d and c are defined in

Fig. 2. This length is minimal when the aspect ratio of

the parallelepiped d � d � c is c=d ¼ 2	3=2. This aspect

ratio was drawn to scale in the elemental volumes shown

at the top of Fig. 2.

The next volume to be optimized is 2d � d � e. The
link QR is from the top rectangular face (plane Q) to the

middle of one of the 2d-long sides in plane R. The length

QR is minimal when the volume aspect ratio is e=d ¼
2	3=2. This aspect ratio is the same as at the smallest

scale.

In summary, after two steps of volume shape opti-

mization we have covered a total volume of size 2d�
2d � ðcþ eÞ. The shape of this volume is the same as

that of the elemental volume, ðcþ eÞ=2d ¼ c=d ¼ 2	3=2.

Point R, which is the center of the bottom ð2d � 2dÞ
square is analogous to point P (the center of square

Fig. 2. The construction of the minimal-length tree between a plane and a point, and a side view of the tree-shaped path.
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d � d), which started the construction. The construction

continues toward planes situated successively under

plane R, and the steps are the same two steps that we

outlined, from P to Q, and from Q to R. This sequence is

indicated by the side view of the construct, which is

shown in the lower part of Fig. 2.

4. Tree between a circle and its center

In the preceding two sections we relied on a single

idea, and we developed two tree-shaped structures, one

in the plane (Fig. 1) and the other in the three dimen-

sional space (Fig. 2). The idea is that in an elemental

rectangle such as c� d (Fig. 1) there exists an optimal

rectangle shape (c=d) such that the ‘‘path out of the rect-

angle’’ is the shortest. The power of an idea comes from

its generality. In this section and the next we show that

the same shape-optimization opportunity can be used to

derive minimal-length flow paths for considerably more

complicated configurations.

In Fig. 3 we propose to construct the connection

between the points of a circle and the center of the circle.

This configuration is similar to taking the point–line

structure of Fig. 1, and curving the P line around point

S, so that S becomes the center of a circle. The rectan-

gular building blocks used in Fig. 1 become deformed

(curvilinear) rectangles. The deformed rectangle is closer

to a true rectangle if it is far from the center. The degree

of closeness is associated with the distance (r) between
the rectangular element and the center.

Consider the elemental curvilinear rectangle of radial

distance r, angle h, and radial thickness d, which is

shown in the upper part of Fig. 3. The area of this ele-

ment is fixed,

A ¼ 1

2
hð2rd 	 d2Þ; constant: ð3Þ

The role of segment PQ of Fig. 1 is played by segment l.

The objective is to minimize l subject to constraint (3),

i.e., to minimize

l2 ¼ a2 þ b2

¼ r 1

��
	 cos

h
2

�
þ d cos

h
2

�2
þ rð 	 dÞ2 sin2 h

2
: ð4Þ

It is convenient to nondimensionalize Eqs. (4) and (3) by

using r as length scale,

l
r

� �2

¼ ð1	 xÞ2 	 2ð1	 xÞ cos h
2
þ 1; ð5Þ

A
r2

¼ h
2
ð2x	 x2Þ; ð6Þ

where x ¼ d=r. According to the method of Lagrange

multipliers [14], the problem of finding the extremum of

function (5) subject to constraint (6) is equivalent to

finding the extremum of the aggregate function

U ¼ ð1	 xÞ2 	 2ð1	 xÞ cos h
2
þ 1þ kh x

�
	 1

2
x2
�
: ð7Þ

Solving the system oU=ox ¼ 0 and oU=oh ¼ 0, and elimi-

nating the Lagrange multiplier k, we obtain the relation

that pinpoints the optimal aspect ratio of the curvilinear

rectangle:

x
h
¼

1	 xð Þ2 sin h
2

ð2	 xÞ x	 1þ cos h
2

� � : ð8Þ

To see how Eq. (8) leads us to optimal shapes, and later

to point–circle trees, assume that h 
 1, such that

cosðh=2Þ ffi 1 and sin h=2 ffi h=2. Eq. (8) becomes

x
h
ffi 1	 x

21=2ð2	 xÞ1=2
; ð9Þ

where x=h is the aspect ratio of the curvilinear rectan-

gle, x=h ¼ d=ðrhÞ. When the radial dimension of the

Fig. 3. Curvilinear rectangle defined by the intersection of ra-

dial lines and concentric circles, and the construction of the

minimal-length tree between a circle and its center.
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rectangle ðdÞ is small in comparison with its distance to

the center (r), i.e., when x 
 1, the optimal aspect ratio

is d=ðrhÞ ffi 1=2, in accordance with Section 2. Closer to

the center of the circle, where x is progressively larger,

the optimal aspect ratio is progressively greater than 1/2.

We can expect the same trends from the exact solution,

Eq. (8).

To construct the minimal-length path between the

outer circle (radius r0) and the center (O), we start from

the outer circle and approximate it as a string of equi-

distant points (P). See the lower part of Fig. 3. The

distance between two consecutive points is d. The angle

sustained by the outermost (elemental) rectangle of pe-

ripheral length d is h0 ¼ d=r0 
 1. The value of h0 must

be selected at the start of construction, e.g., h0 ¼ 0:1.
Substituting h0 for h in Eq. (8), we calculate x0, or the

aspect ratio of the elemental rectangle ðx0=d0Þ, or the

radial thickness of the element, d0 ¼ r0x0. The radius of

the inner circle that borders the elemental rectangle is

r1 ¼ r0 	 d0.

The next curvilinear rectangle subtends the angle

h1 ¼ 2h0, and has the radial position r1. Eq. (8) delivers
x1, the aspect ratio x1=d1, and the radial dimension

d1 ¼ r1x1. The radius of the next circle is r2 ¼ r1 	 d1.

This algorithm can be applied a sufficient number of

times, marching toward the center of the circle, and

drawing the resulting tree network. The construction

must stop at a certain step (i) if

hi > 2p ð10Þ

or

ri < 0 ð11Þ

whichever occurs first. During the numerical imple-

mentation of the algorithm we found that thresholds

(10) and (11) are reached simultaneously in this con-

struction. The constructions for h0 ¼ 0:1 and h0 ¼ 0:05
are reported in Fig. 4. We expect the constructed tree to

be imperfect approximate near the center, because the

rectangle approximation becomes poorer in the limit

r ! 0.

5. Tree between one point and many points distributed

uniformly over an area

In the preceding sections we constructed minimum-

length paths for connecting one point source (or sink) to

a large number of point sinks (or sources) situated on a

line, or on a plane. In the case of the plane, the point

source S was situated at a distance away from the plane

(Fig. 1). The space between the point source and the

plane did not contain any sources or sinks – it contained

the connecting network.

In this section we consider the more challenging

problem of connecting the point source to a large num-

ber of point sinks that cover an area uniformly. The

point source and the many sinks are in the same plane.

We may think of this configuration as a river basin (the

area) that collects rain water at a uniform rate per unit

Fig. 4. Examples of tree-shaped connections between a circle and its center. The h0 value accounts for the number of points on the

circle.
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area, and which uses its links (rivulets and rivers) to

channel the collected water out of the territory, as a

single stream. We may also think of this problem as a

modification of the line–point flow network of Fig. 1,

where the added feature is the presence of uniformly

distributed points (sources, or sinks) on the area be-

tween the P line and the common source or sink (S).

How the construction starts depends on how the

points are distributed over the given area. The simplest

construction is sketched at the top of Fig. 5, where the

assumption is that the points are distributed in a square

pattern. The start is the elemental area of size A0, which

is allocated to one of the many points P. By performing

a length-minimization analysis that is analogous to the

analysis of Section 2, we find that the shape of A0 must

be square. In this case the distance from P to the corner

of A0 (the exit from the elemental area) is the shortest.

The side of the elemental square is L0 ¼ A1=2
0 .

Square elements can be assembled tightly into square

constructs of progressively larger sizes. Each new con-

struct, Ai, consists of four constructs of the preceding

size, Ai ¼ 4Ai	1 ¼ 4iA0 ði ¼ 1; 2; . . .Þ. The first construct

(A1, Fig. 5) has the purpose of connecting four points

(P1, P2, P3, P4) to the single exit point Q. The way out of

area A1 is a cross in which three half-diagonals meet

in the center of A1, and the stem touches point P4 be-

fore reaching Q. In the drawing of A1 we have em-

ployed lines of increasing thicknesses, to suggest that

elemental streams combine into larger streams en route

to the exit (Q).

The second construct is itself a cross-shaped assem-

bly of first constructs. Fig. 5 shows that the exit points of

Fig. 5. Top: The construction of the tree between one point (R) and an area covered uniformly by points (P) arranged in a square

pattern. Bottom: The overall flow resistance between the point (source, sink) and the most distant point of the area that is covered

uniformly with points.
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three A1-size constructs meet in the Q center of the

second construct. The fourth A1 construct is connected

to the network, as the diagonal stem travels from Q to

R. The flow rate increases in steps, from P to R. The

numbers attached to each link indicate the relative

magnitude of each local flow rate, where ‘‘1’’ stands for

the flow rate that reaches each elemental point of type P.

As figure of merit for the resulting tree network we

evaluate the pressure difference between the farthest

point on the territory (e.g., point P on A2) and the exit

point (point R on A2). For simplicity, we assume that all

the pipes have the same diameter, and the flow is in the

Hagen–Poiseuille regime through every pipe. The pres-

sure drop across one link ðDPkÞ is proportional to the

mass flow rate through the link ð _mmkÞ and the length of

the link ðLkÞ. The mass flow rate changes from one link

to the next, where Lk is constant and equal to the half-

diagonal of the elemental square, Lk ¼ 2	1=2A1=2
0 . If _mm0 is

the mass flow rate through one elemental link (the link

that touches point P), then the ratio _mmk= _mm0 is the relative

flow rate indicated by the number attached to each link

of the A2 construct in Fig. 5. To summarize, the pressure

drop across link k is

DPk ¼ C _mmkLk ; ð12Þ

where the C coefficient is a constant dictated by the ki-

nematic viscosity of the fluid and the pipe diameter D,

namely C ¼ 128m=ðpD4Þ. The pressure drop from the

most distant point P (the upper-left corner of A2) to the

exit point (e.g., R of A2) is obtained by summing along

the descending diagonal the link pressure drop contri-

butions DPk ,

DP ¼
X

from P; to Q;R;...

DPk : ð13Þ

This quantity can be nondimensionalized as

~PP ¼ DP

C _mm0A
1=2
0

Q R S

¼ 2	1=2ð1þ 3þ 4þ 12þ 13þ 15þ 16þ 48þ 
 
 
 þ 64þ 
 
 
Þ;
ð14Þ

where the numbers in the brackets represent the relative

mass flow rates through the links of the descending di-

agonal. The pressure drop increases stepwise as the size

of the construct increases. The latter is also indicated in

Eq. (14) by the label of the exit corner of each construct

(Q;R; . . .), which is placed above the relative flow rate

of the stream that leaves through the lower-right corner

of each construct (4; 16; 64; . . .). The way in which the

overall pressure drop increases as the covered territory

grows is indicated by square symbols in the lower part

of Fig. 5, where n is the number of elements of size A0

contained in the total area covered by the construct.

Another way to cover an area uniformly with points

is to assign an approximately round area A0 to each

point, and to fit the A0 elements so that they cover the

given territory completely. A tight packing is obtained

when each A0 is squeezed into the shape of a regular

hexagon with L0 ¼ bA1=2
0 as the distance between the

opposing sides of the hexagon, b ¼ ð2=3Þ1=2ðtan 30�Þ	1=2
.

The point P is the center of the hexagon, as shown in the

first drawing of Fig. 6. The path out of the element is the

line of length L0=2, from P to the midpoint of one side of

the hexagon. This packing places the points of type P

into a pattern of equilateral triangles.

The construction sequence is described in Fig. 6. The

first construct consists of only three elements. The dis-

tance between adjacent points is L0. The three points are

connected by an asymmetric Y-shaped path with the

root at the exit Q. We find that asymmetry is a necessary

feature of assembly when the A0 elements are the round-

est, i.e., regular hexagons. Asymmetry distinguishes the

tree-shaped paths of Fig. 6 from the trees connecting

square constructs (Fig. 5). Dichotomy, or pairing of two

links to form a stem is another feature that distinguishes

Fig. 6 from Fig. 5.

The second construct ðA2Þ brings to light another

feature that was not present in Fig. 5. A hole of size A0 is

left uncovered when first constructs are assembled into a

second construct. In Fig. 6 the hole is in the center of A2,

and is covered by one A0 element (shown darker). The

drawing also shows the relative mass flow rates along

each link. Asymmetry is accentuated at the second-

construct level, because the central A0 element must be

connected to one of the two sides of the large V that

contains the tree network. The flow rates collected by

the two sides of the V are slightly unbalanced (5, vs. 4

mass flow rate units), as they reach the center of the

bottom element. We will show that minimizing this im-

balance is important from the point of view of opti-

mizing the network, i.e., for the purpose of distributing

the imperfections of the network optimally.

These distinguishing features are even more striking

in larger constructs. The first drawing in the bottom row

of Fig. 6 shows how a third construct can be formed by

assembling three second constructs. A hole of size 6A0 is

left uncovered in the middle of the third construct. The

central part of this hole was filled with one first con-

struct, which is dark. The remaining corners of the hole

(lighter shadow) are connected to the nearest points. The

numbers indicate the relative mass flow rate through

each link. Asymmetry and flow imbalance are evident.

The two branches of the large V, which meet at the

bottom of the third construct, show a flow rate imbal-

ance of 20 units versus 15.

In addition to asymmetry and imbalance, in Fig. 6 we

see the emergence of increasingly more freedom in how

to connect the elements of the inner hole to the structure

that delineates each new V-shaped construct. The rule of
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assembly applied from A0 to A1, from A1 to A2, from A2

to A3, etc., concerns only the corner areas of each tri-

angular construct. The new construct is made of three

constructs of the preceding size, plus filler area in the

middle. There is more than one way of connecting

the central area to the peripheral building blocks of the

structure. The lower-left drawing of Fig. 6 shows one

way. Better ways can be found by analyzing the per-

formance of the tree-shaped flow network.

The calculation of the overall pressure drop between

P and subsequent exit points (Q;R; S; . . .) in Fig. 6 fol-

lows the steps described in conjunction with Eqs. (12)–

(14). We employ the same notation, and assume that the

elemental area A0 of Fig. 6 is the same as the area A0 of

Fig. 5. This means that the length scale L0 of Fig. 6 is not

exactly the same as the L0 scale of Fig. 5. With reference

to the left side of the V-shaped A3 construct shown in the

lower-left drawing of Fig. 6, the overall pressure drop is

~PP ¼ DP

C _mm0A
1=2
0

Q R S

¼ b 1

�
þ 3þ 5þ 10þ 11þ 18þ 20þ 1

2
36 
 
 
 
 
 


�
:

ð15Þ

A smaller ~PP value is found if the calculation proceeds

along the right side of the V,

Q R S

~PP ¼ bð1þ 3þ 5þ 10þ 12þ 14þ 15þ 1

2
36 
 
 
Þ: ð16Þ

The higher ~PP value prevails, and measures the overall

imperfection (resistance) of the flow path. Clearly, a

smaller-flow rate at the root of the side along which ~PP is

calculated is good for the purpose of decreasing ~PP . A
smaller flow rate is achieved by balancing as closely as

possible the two sides of each V. The lower-right drawing

of Fig. 6 shows a more balanced way of connecting the

inner hole (dark) to the three A2 constructs that make up

A3. The flow imbalance at the bottom of the V is 18 units

versus 17. The overall pressure drop along the left side

of the V is

Q R S

~PP ¼ b 1þ 3þ 5þ 10þ 14þ 16þ 18þ 1

2
36 
 
 


� �
;

ð17Þ

which is less than in Eq. (15). Balancing resistances, or

optimizing the distribution of imperfection is effective

[1].

The ~PP values calculated based on Fig. 6 (lower right)

and Eq. (17) are plotted versus n in Fig. 5, where n is the

number of A0 elements in each construct. These points

are indicated by circles, and fall below the apparent line

of squares associated with the upper part of Fig. 5. The

conclusion is that the construction of Fig. 6 is more ef-

fective for the purpose of connecting one point to the

Fig. 6. The construction of the tree between one point (Q;R; . . .) and an area covered uniformly by hexagonal area elements. The

bottom row shows two designs for covering the central area of the third construct.
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large number of points distributed uniformly over an

area.

To see even more clearly why the assembly of regular

hexagons is a more effective flow structure, consider the

only option that is still available for covering an area

with elements that are regular polygons. That option is

to use elements shaped as equilateral triangles, Fig. 7.

The elemental area A0 is the same as in the case of square

elements (Fig. 5) and hexagonal elements (Fig. 6). Fig. 7

shows that when a large area is covered by equilateral

triangles, the centers of mass of the triangles (P) arrange

themselves in a pattern of regular hexagons. The side of

the hexagon, or the shortest distance between two points

of type P is L0 ¼ b0A1=2
0 , where b0 ¼ ð2=3Þðtan 30�Þ	1=2

.

The length L0 is not the same as the L0 dimensions used

earlier.

Fig. 7 shows the first steps in the construction based

on equilateral triangles. The first construct ðA1Þ consists
of four elements, and is itself an equilateral triangle. The

four center points (P) are linked into a symmetric Y-

shaped flow path. The exit from the first construct (Q) is

along the shortest path from the Y structure to the

boundary of A1. The number attached to each link in-

dicates the relative flow rate, where 1 represents the el-

emental flow rate arriving at or departing from a center

point P.

The second construct ðA2Þ is formed by three A1

constructs and an inner area of size 4A0. The A2 drawing

Fig. 7. The construction of the tree between one point (Q;R; . . .) and an area covered by area elements shaped as equilateral triangles.
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shows the only way in which the centers of the four inner

elements can be connected to the rest of the network, so

that the resulting flow structure is without loops. The

result is asymmetry: Note the asymmetric connections

that cover the shaded area. Note also the flow rate im-

balance (5 vs. 7) between the streams that enter the

bottom A1 construct. The construction of Fig. 7 can be

extended to cover larger areas, as shown by the A3 de-

sign.

The performance of the structure based on triangular

elements can be evaluated by using the same pressure

drop model and calculation procedure as in Eqs. (14)

and (17). For the structure of Fig. 7 we obtain

~PP ¼ DP

C _mm0A
1=2
0

Q R

¼ b0 1

�
þ 3þ 1

2
4þ 1

2
4þ 7þ 8þ 15þ 1

2
16þ 1

2
16þ 
 
 


�
:

ð18Þ

Note the relative flow rate indicated by 7 in the fifth term

inside the round brackets. This means that at the A2 level

we chose to estimate the largest pressure drop, which

occurs between the extremities of the upper-right A1 area

and the root R. Had we chosen the upper-left A1 con-

struct as the start of the DP calculation, we would have

used 5 in place of 7, and we would have underestimated

the actual overall pressure difference sustained by the

second construct.

The ~PP values generated based on Fig. 7 and Eq. (18)

are indicated by triangles in Fig. 5. These values fall

between the preceding two sets (squares, circles), and

reconfirm the conclusion that the most effective flow

structure is the one based on hexagonal elements.

Structures with hexagonal and triangular elements per-

form nearly the same as their complexity (n) increases.
They perform better than structures with square ele-

ments, and this suggests that structures with pairings

perform better than structures with three tributaries at

each point of confluence.

There is another geometric conclusion that we must

stress, and it refers to the angles between branches.

From triangular area elements, to square and hexagonal

elements, the angles decrease from 120� to 90� and 60�.
The smallest angle corresponds to the best structure,

and it comes from ‘‘packing’’ needs – how to cover an

area completely by using the shortest links between the

centers of elements. The 60� angle of confluence or

branching, which looks so much like the natural angles

of the trees known from physiology and geophysics, is a

consequence of packing, or the difficulty of covering an

area with identical elements. In this paper, the 60� angle
does not come from an optimization procedure such as

the minimization of flow resistance at the level of one

pairing or bifurcation, as reported earlier by Zamir [15],

Ledezma et al. [16] and Bejan et al. [11].

6. Three-dimensional trees

The selection of flow problems in this paper followed

an exploratory course, from the simple toward the

complex. Most of the work referred to tree-shaped

connections in a plane, because flat trees are relatively

simpler and easier to illustrate on paper. Their impor-

tance in practice remains undiminished, in view of

the many natural trees found in river basins, vascular-

ized membranes, traffic patterns and power distribution

networks.

The direction of future work is to extend the present

construction method to trees in three dimensions, to

connect one point to many points distributed uniformly

through a volume. We made a step in this direction in

Section 3, where the connection was between the many

points of a plane and one point situated off the plane

(Fig. 2). The next challenge is to consider the case where

the entire space around the single point (S) is populated

uniformly by points that must be connected optimally to

S. This extension is beyond the scope of this study, and

is proposed for future work.

A basic question is whether the best Y-shaped as-

semblies of two links joined into one link are flat or

three-dimensional. The example of by Fig. 2 is one

where the Y construct lies in two planes that intersect at

an angle. Two branches of type PQ form a plane, while

the stem QR pierces that plane at an angle. Is a per-

fectly flat Y construct better? This question is rele-

vant, because careful observations of three-dimensional

branchings in the cardiovascular tissue have indicated

conclusively that the flat Y construct is the prevailing

form in three-dimensional trees [17].

Consider the two bent-Y constructs obtained in the

first two stages of Fig. 2. The volume occupied by one

such construct is the same as that of the smallest shaded

rectangle in the upper-left corner of Fig. 3. We consider

this volume fixed, V ¼ 2d2ðcþ eÞ or V ¼ 21=2d3, because

c ¼ e ¼ 2	3=2d. The bent Y structure has two lengths,

PQ ¼ L0 ¼ ðc2 þ d2=4Þ1=2 ¼ ð3=2Þ1=2d=2, and QR ¼ L1 ¼
ðe2 þ d2=4Þ1=2 ¼ L0. In order to evaluate the perfor-

mance of this structure as a path of least flow resistance,

we assume that the Y is the confluence of two round

tubes of diameter D0 and length L0, which form one

tube of diameter D1 and length L1. We assume that

the total tube volume is constrained, Vt ¼ 2ðpD2
0=4Þ�

L0 þ ðpD2
1=4ÞL1, that the flow is in the Hagen–Poiseuille

regime, and that the ratio of tube diameters has been

optimized for minimal resistance, D1= D0 ¼ 21=3. Using

this ratio and L0 ¼ L1, we rewrite the tube volume con-

straint as Vt ¼ ðp=2Þð1þ 2	1=3ÞD2
0L0. The pressure drop

across the Y structure is DP ¼ DP1 þ DP0, where DP1 and
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DP0 are the pressure drops across the L1 tube (flow

rate _mm ) and, respectively, across the L0 tube (flow rate

_mm=2),

DP ¼ C0 _mm
L1

D4
1

þ C0 _mm
2

L0

D4
0

; ð19Þ

where C0 ¼ 128m=p. Eq. (19) can be nondimensionalized

into an overall flow resistance, after using the preceding

results for L0, L1 and D1=D0, and by eliminating D0 and

d between Eq. (19) and the V and Vt constraints:

~PPbent Y ¼ DP V 2
t

_mmC0V
¼ 33=2p2

28
ð1þ 2	1=3Þ3 ¼ 1:156: ð20Þ

The analysis and optimization of the flat Y structure

is performed in relation to the drawing shown in Fig. 8.

The Y structure lies in the plane of size f � 2d. The
volume inhabited by the construct has the same size as

before, V ¼ 2d2g. The height of the rectangle in which

the Y structure resides is f ¼ ðg2 þ d2=4Þ1=2. The incli-

nation of this plane is free to change, and so is the length

L1, or the location of the Q junction. In summary, the Y-

shaped construct has two degrees of freedom, which in

the following analysis are represented by the aspect

ratios a=d (or L0=L1Þ and f =d, where a ¼ f 	 L1. The

overall pressure drop, Eq. (19), can be combined with

the Vt constraint and D1=D0 ¼ 21=3, and the result is

DP ¼ _mmC0p2

8V 2
t

ðL0 þ 2	1=3L1Þ3: ð21Þ

The group in the round brackets can be minimized by

varying the geometry. We accomplish this in two steps.

First, we assume that the rectangular area f � ð2dÞ does
not change. On it, the only variable is a, or the position

of point Q. The group ðL0 þ 2	1=3L1Þ can be expressed as

a function of a, f and d, and can be minimized with re-

spect to a. The result is the optimal ratio a=d ¼ ca, where
ca ¼ 2	1ð22=3 	 1Þ	1=2

. Related results are L0=d ¼ c0,
where c0 ¼ ð1	 2	2=3Þ	1=2

=2, and L1=d ¼ f =d 	 ca. These

values can be substituted into Eq. (21), and after elimi-

nating d3 based on the V constraint, we obtain the di-

mensionless flow resistance of the flat Y construct:

~PPflat ¼
p2½c0 þ 2	1=3ðf =d 	 caÞ�3

16½ðf =dÞ2 	 1=4�1=2
: ð22Þ

We found numerically that this function reaches its

minimum at f =d ¼ 0:716, where its value is ~PPflat Y ¼
0:800. Other relevant geometric characteristics of the

optimized structure are a=d ¼ 0:652, g=d ¼ 0:512, L0=
L1 ¼ 13:01 and L1=f ¼ 0:088.

Eqs. (20) and (22) show that the global resistance of

the flat Y structure is 30 percent smaller than the global

resistance of the bent Y structure. This lends support to

the view [1] that natural Y structures, which are flat [17],

are results of a process of flow access optimization.

7. Concluding remarks

In this paper we explored a simpler and more direct

route to the construction of tree-shaped flow structures

connecting discrete points (sources, sinks) with large

numbers of points (lines, areas, volumes). The starting

point was the observation that the shape of an elemental

volume of the flow network can be selected such that

the length of the flow path housed by the element

is minimal. By proceeding toward larger and more

complex structures (elements, first constructs, second

constructs; . . .), we constructed flow networks between

one point and a straight line (Section 2), one point and a

plane (Section 3), a circle and its center (Section 4), and

one point and many points distributed over an area

(Section 5). In the latter we also considered a specific

example of laminar fluid flow through a network with

tubes of the same diameter, and showed that tube

lengths and the shape of the interstitial area elements

govern the optimization of the flow architecture.

Fig. 8. Flat Y-shaped flow construct in the elemental volume of a three-dimensional tree network.
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To evaluate the effectiveness of the minimal-length

structures developed in this paper, we compared the

point–circle construction of Section 4 with a tree-shaped

network obtained by optimizing every geometric detail

of the flow network. The optimization of every detail is

reported in [18]. The comparison is made on a common

basis: the circle of fixed radius r0, the use of tube pairing,
and the fixed total volume of the tubes with Hagen–

Poiseuille flow, Vt. The step change in tube diameters is

optimized in accordance with Eq. (1). The number of

points arranged equidistantly on the circle is N ¼ 24.

Fig. 9(a) shows the flow structure derived after op-

timizing features such as L0, L1, L2, L3, b, c, /, x1, x2 and

x3, where r0 ¼ L0 þ x1 þ x2 þ x3. The overall flow resis-

tance is [18]

DP
_mm

¼ 8pm
r30
V 2
t

f ; ð23Þ

where DP is the pressure difference between the center

and the circle, _mm is the total mass flow rate, f is the di-

mensionless flow resistance

f ¼ n0
Xp
j¼0

2j=3
Lj

r0

 !3

; ð24Þ

where n0 is the number of tubes that reach the center

ðn0 ¼ 3Þ, and p is the number of levels of pairing

Fig. 9. Tree flows between a circle and its center: (a) construct obtained by optimizing every geometric detail; and (b) construct

produced by the length-minimization algorithm presented in Section 4.

Fig. 10. The global flow resistance for: (a) constructs obtained by optimizing every geometric detail; and (b) constructs produced by

the length-minimization algorithm presented in Section 4.
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ðN ¼ 3� 2PÞ. The structure of Fig. 9(a) is the result of

minimizing f by exploiting all the degrees of freedom of

the flow architecture. The minimized f value is plotted in

Fig. 10 not only for N ¼ 24 but also for other numbers

of points on the circular perimeter (N ).

Fig. 9(b) shows the corresponding structure designed

based on the length-minimization algorithm developed

in Section 4. Visually, there is relatively little difference

between the two constructions, Figs. 9(b) and (a). The

same can be said about the f values of the competing

designs. The squares plotted on Fig. 10 show that, al-

though consistently inferior, the performance of mini-

mal-length structures resembles closely the performance

of fully optimized structures. In conclusion, the length-

minimization method proposed in this paper provides a

very effective shortcut to designs that come close to the

best designs. The minimal-length designs approach the

optimal designs in terms of global performance, and

architecturally as well. The closeness documented in

Figs. 9 and 10 shows again that optimized tree flow

structures are robust [1].
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